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SUMMARY

Pollutant dispersion under unstably stratified atmosphere was investigated numerically using the finite
element method. The effects of atmospheric stability on plume trajectory were studied using a three-di-
mensional second-order closure dispersion model. The numerical model was implemented using domain
decomposition method and carried out using a parallel computer. The computation accelerates signifi-
cantly and the size of computation can be largely increased as a result of the parallelism. A passive
contaminant point source was placed at the middle of the convective boundary layer to simulate the
atmospheric dispersion. The requirement of the input of dispersion coefficients in k-theory and Gaussian
models was replaced with direct input of turbulence flow data. It was found that the present numerical
model can predict several non-Gaussian plume behaviours and the computed results agreed well with
findings from experimental observations. © 1998 John Wiley & Sons, Ltd.
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1. INTRODUCTION

Atmospheric dispersion of contaminants in convective boundary layer is a current issue in air
pollution studies because of the important consequences it may bring to our environment.
Experience indicates that it is difficult to accurately predict the transport phenomenon of
contaminants in the atmosphere, which is a function of the source conditions, meteorological
factors and geographical locations. The Gaussian plume model is so far the most commonly
used dispersion model in the world. However, laboratory experiments [1,2] found that several
plume behaviours, such as the descent and rise of plume trajectory in an unstably stratified
atmosphere, could not be accurately described by Gaussian and k-theory dispersion models.
Also, these models use empirically determined turbulent dispersion coefficients to account for
the effects of wind fluctuations, which, however, are site specific and thus introduce error to
the modelling. The use of a higher order closure model can overcome the above weaknesses
and opens up new avenues in this research area.

Second-order closure model is the one which has distinct capabilities in dispersion mod-
elling. Lewellen [3] derived a second-order closure dispersion model from the exact Reynolds
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stress equation, which accurately compares the spreading rate of pollutant with experimental
observation of Pasquill and Smith [4] under neutrally stratified conditions. Sykes et al. [5]
presented a system of transport equations for the second-order correlations of passive scalar
fluxes and demonstrated its ability to predict dispersion characteristics in a wind tunnel
experiment. Lamb [6] developed a Lagrangian diffusion model and obtained several non-Gaus-
sian features. The results are also comparable to laboratory experiments [7–9]. Recently, Liu
and Leung [10] computed the crosswind integrated pollutant concentration for both the
horizontal and vertical plane in an unstably stratified atmospheric boundary layer, which
compared well with experimental results.

The above results show the principal strength of the second-order closure model in pollutant
dispersion modelling over the Gaussian approach. Furthermore, the direct use of turbulent
flow data instead of empirical eddy diffusivities or dispersion coefficients makes it superior to
the k-theory and Gaussian models in studying the effect of background turbulence on plume
dispersion. It can provide a general framework within which complex flow and dispersion
effects can be considered simultaneously.

It is recognized from literature that the major shortcoming of second- and higher-order
closure models is the solving of more non-linear, coupled partial differential equations than
k-theory and Gaussian dispersion models. In three-dimensional study, four equations are
needed for a second-order closure model while only one is needed for a k-theory dispersion
model. Therefore, the implementation of a second-order closure model into computation code
is both memory and computation time intensive. Its usage is severely hampered by sequential
computing. However, with the exploitation of parallel or concurrent computers, the large
computation load for solving the complicated equations can be vastly improved.

The principle of parallel or concurrent computing is the use of many processors working
cooperatively on a single problem. This is one of the technological advancements that
influences large scale scientific and engineering computation. The use of parallel computation
is one of the solutions for solving the above two barriers of implementation of second-order
closure model.

In this paper, the methodology and procedures in parallelizing a second-order closure
dispersion model will be discussed.

2. MATHEMATICAL MODEL

The mathematical model used in the present study is based on the following homogeneous
equations as described elsewhere [3,11].

Transport equation for mean scalar concentration c :
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A second-order closure scheme is adopted to close the above equation, which involves the
following second moment transport equations for the fluxes 6%c % and w %c %:
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Covariance of concentration and temperature c %u % is required to close the system of transport
equations as follows:
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3. COMPUTATION DOMAIN AND BOUNDARY CONDITIONS

The computation domain is shown in Figure 1. To economize the computer resources, the
pollutant dispersion problem is assumed to be symmetrical about the centreline plane of the
pollutant source, i.e. y=0.

Gaussian distribution for c was used as the left-most boundary condition:

Figure 1. Computation domain and boundary conditions.
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where x is the downwind distance from the source at which the boundary conditions applied.
Since sy and sz are functions of x and would be zero at x=0, there is a singularity at (0, 0, zs),
i.e. the point source centre where c=�. To avoid the singularity, x is assigned the value 0.05
m, such that the effects of second moment can be studied nearer to the source, while the
computation accuracy will not be affected by the singularity near the pollutant point source.
It should be noted that Equation (5) has accounted for the reflection of pollutant from the
ground surface.

The horizontal and vertical dispersion coefficients sy(x) and sz(x) at x are obtained by the
following expressions, suggested by Pai and Tsang [12]:

sy(x)=6%2
1/2 x

Us

, (6)

sz(x)=w %2
1/2 x

Us

. (7)

In the left-most boundary (i.e. Y–Z plane at x=x), the boundary conditions for 6%c % and
w %c % are described by Equations (8) and (9), respectively,
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w %c %= −k
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, (9)

where the eddy diffusivity k is given as:

k=3×0.1×L
E. (10)

In calculating the turbulent length scale L, the following expression, suggested by Sun and
Chang [13] was used:
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Output from the Gaussian plume model is a solution to the transportation equation of mean
scalar concentration c in Equation (1), by assuming the fluxes to be proportional to the
gradient of mean scalar concentration c. As the effect of temperature fluctuation has not been
considered in the Gaussian model, the covariance of concentration and temperature c %u % is set
to zero at x=x. In the right-most computation domain, natural boundary conditions were
used.

At the top of the model, which is equal to the height of the convective boundary layer and
at the surface boundary, the following boundary conditions suggested by Enger [14] were used:

At the top boundary

(c
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Along the source centreline, the following boundary condition can be used due to symmetry:
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In the horizontal direction, the width of the computation domain is sufficient and the following
gradients can be set to zero:
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The present model would be validated using the experimental observations of Willis and
Deardorff [1] and Willis [2], therefore, the same computation sizes were used, i.e. 1.31, 0.6 and
0.3 m along the x-, y- and z-direction, respectively. After several tests against convergence, the
number of grid points used is 31, 40 and 25 in the x-, y- and z-direction respectively, making
a total of 31 000 points in the whole computation domain. The space of grid points along the
three axes is distributed evenly.

4. NUMERICAL METHOD

The above set of equations was solved using a linear basis function of finite element scheme.
Eight-node brick element and linear basis interpolation functions were used. The local element
co-ordinates (ji, hi, zi) of the eight-node points were assigned as:

(j1, h1, z1)= (−1, −1, −1)

(j2, h2, z2)= (1, −1, −1)

(j3, h3, z3)= (1, 1, −1)

(j4, h4, z4)= (−1, 1, −1)

(j5, h5, z5)= (−1, −1, 1)

(j6, h6, z6)= (1, −1, 1)

(j7, h7, z7)= (1, 1, 1)

(j8, h8, z8)= (−1, 1, 1)

It is assumed that the variable f (i.e. c, 6%c %, w %c % and c %u %) can be approximated by a linear
basis function as follows:

f= %
n

i=1

Nifi, (16)

where n=8 for an eight-node brick element. In matrix notation,

f= [N ]{f}, (17)

where

[N ]= [N1 N2 N3 N4 N5 N6 N7 N8], (18)

and

{f}={f1 f2 f3 f4 f5 f6 f7 f8}T. (19)

The linear basis interpolation function Ni at each node point i is defined as:
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Ni=
1
8
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Galerkin finite element method was applied to Equations (1)–(4) with the Neumann
boundary conditions (Equations (12)–(15)), to obtain the following spatial discretized finite
element equations:
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The above four weak Galerkin forms in Equations (21)–(24) lead to the following standard
semi-discretized finite element equations:
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To facilitate the numerical integration, the isoparametric finite element method is used in the
calculation of stiffness and mass matrices. Assuming that the global co-ordinates (x, y, z) can
be expressed by the interpolation function Ni and the global node point co-ordinates (xi, yi, zi)
as:

x= [N ]{x}, (41)

y= [N ]{y}, (42)

z= [N ]{z}, (43)

where

{x}={x1 x2 x3 x4 x5 x6 x7 x8 }, (44)
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{y}={y1 y2 y3 y4 y5 y6 y7 y8 }, (45)

{z}={z1 z2 z3 z4 z5 z6 z7 z8 }. (46)

By differentiating Equation (20) with respect to j, h and z, respectively, the following system
of equations expressed in matrix form is obtained:
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The following matrix is obtained by substituting Equations (41)–(43) into (47):
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Let the 3×3 matrix in Equation (48) be J, then the derivative of Ni with respect to x, y and
z can be expressed as follows:
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The derivative of Ni with respect to (x, y, z) is then expressed in terms of local co-ordinates
(j, h, z). This is done to simplify the calculation of stiffness and mass matrices from analytical
calculation to numerical integration, which is then carried out by 3×3×3 Gaussian Quadra-
ture approximation [15].

For greater numerical stability in temporal discretization, the Crank–Nicolson scheme [16]
is used to integrate the semi-discretized Equation (25) in time:
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Equation (50) is then rearranged to obtain the following equation:�M
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+
K
2
n
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Dt

−
K
2
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After applying the initial and boundary conditions, the system of equations is then solved by
successive overrelaxation method [17], i.e.
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Figure 2. Local co-ordinates of an element.

f i
k=vf i

k+ (1−v)f i
k−1, (52)

until the residue of Equation (51) is sufficiently small. Then, f i
n, the node value of node point

i at time n can be obtained.

5. SPARSE MATRIX STORAGE

With the use of the finite element method to solve the system of partial differential equations
discussed above, a large sparse system of linear algebraic equations (i.e. [M ] and [K ]) will be
obtained. A sparse matrix algorithm is an algorithm that performs a matrix computation in
such a way as to take advantage of the zero/non-zero structure of the matrices involved [18].
With the advantages of sparsity—not explicitly storing or manipulating some or all of the zero
elements—the size of problem and the efficiency of computation can be greatly increased.

For storage of the sparse matrix used in the present numerical model, compressed row
storage method [19], the most general method to store sparse matrix, was adopted. It makes
no assumption about the sparsity structure of the matrix, but puts the subsequent non-zeros
of the matrix row in contiguous memory location.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 677–696 (1998)
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With the use of compressed row storage method, three vectors (one-dimensional array) were
used for the storage of an n×n sparse matrix A. The first vector is a number of non-zero (nnz)
entities of the matrix A. The memory ratio of two more integer vectors, one for row indices
and one for the storage of the first element in each column, is as follows:

compressed row storage method
original sparse matrix in full form

=
nnz(float/double)+nnz(integer)+n(integer)

n×n(float/double)
. (53)

The structure of the sparse matrix was determined by the connectivity of the node points in
the computation domain as shown in Figures 2 and 3. If point i is connected to point j, the
entity aij in the full matrix is treated as non-zero and put into the contiguous memory. The
connectivity of the node points can be determined by an element and global node number table
[20]. This scheme is simple and can predict the matrix structure from the non-zero structure of
the problem instead of non-zero structure of the matrix. In other words, the structure of the
sparse matrix was determined before constructing the global mass and stiffness matrices. So
the memory allocation of the sparse matrix is in the form of compressed row storage instead
of original sparse matrix in full form. The large memory requirement for original sparse matrix
in full form can thus be avoided and larger scale computation can be achieved. By iterating the
roots using the successive overrelaxation method, the calculation was also accelerated, since
only non-zero elements of the sparse matrix were considered.

Figure 3. Sparse matrix structure determination by connectivity.
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Figure 4. Decomposed domain.

6. SOLUTION ALGORITHM

The domain decomposition method, suggested by Akay and Beskik [21], was adopted for the
present numerical model. The case with non-overlapping interfaces as shown in Figure 4 is
studied. The original computation domain is divided into a number of subdomains or solution
blocks along the x-axis. Each subdomain is then further divided into MI×MJ×MK number
of element along the x-, y- and z-directions, respectively and then solved using the finite
element method discussed previously. After completion of the iteration of roots at each time
step, a subdomain uses the solution of adjacent subdomain as boundary condition for the next
iteration. Since the boundary condition in the x-direction remains natural in the right-most
side (streamwise direction), the direction of solution passes from left to right along the x-axis.

The present calculation was carried out using an IBM 9076 Scalable POWERparallel System
SP2. Sixteen nodes (processors), numbered from 0 to 15, were available for the present
calculation. In the present arrangement one of the nodes is assigned as master (node no. 0),
responsible for input and allocation of relevant data between other nodes. The remaining
nodes (node nos. 1–15) acted as working nodes and are responsible for the calculation.

© 1998 John Wiley & Sons, Ltd. Int. J. Numer. Meth. Fluids 26: 677–696 (1998)
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The whole computation domain was divided into 15 subdomains, each working node is
responsible for the calculation of one subdomain. After the construction of mass and stiffness
matrices (i.e. spatial discretization), transient calculation starts (i.e. temporal discretization).
The master node transfers the left-most boundary condition to node no. 1 at the start of time
step t, then node no. 1 carries out the calculation of its subdomain for time t.

After node no. 1 completes its calculation at time step t, its right-most results
(c, 6%c %, w %c %, c %u %) will be sent to its adjacent subdomain in the right-hand side, i.e. node no. 2
(subdomain no. 2), thus, node no. 2 obtains its left-most boundary condition at time step t.
Node no. 2 then carries out its calculation at time step t. When node no. 1 finishes the transfer
of the right-most results to node no. 2, it receives left-most boundary conditions from master
and then carries out its calculation at time step at t+Dt. Other nodes also carry out the
calculation and data transfer similar to node nos. 1 and 2, as summarized in Figure 4.

The above parallelism can be explored using a parallel computer. Once the boundary
conditions from adjacent subdomain are passed, each subdomain system can be solved
separately without communication until the next time step. This method reduces the portion of
computation time in message passing or information transfer between nodes. Implementation
of the above domain decomposition method on a parallel computer could lead to a consider-
able gain in time. Furthermore, the size of problems can be increased as each processor only
stores the unknowns of its awarded subdomain. The subdomain is chosen to equalize the
computation load and computer resources.

7. RESULTS AND DISCUSSION

Results of the present numerical model are compared with the experimental observations of
Willis and Deardorff [1] and Willis [2] for the release of pollutant at mid-level and ground
level. These experiments were conducted in an unstably stratified convective water channel,
which was used to study the effect of pollutant dispersion in a convective atmospheric
boundary layer. The numerical and experimental results would also be compared with the
result of another numerical model by Sykes et al. [11] which obtained the pollutant concentra-
tion by first determining the dispersion coefficients and assuming Gaussian distribution for the
pollutant concentration. No such assumption was made in the present study for the pollutant
concentration and the mathematical model described above was solved directly. Thus, more
realistic non-Gaussian plume behaviours can be studied, particularly the dispersion in the
vertical direction.

The plume centroid, (y, z), can be determined by

y=
�yc�
�c�

(54)

z=
�zc�
�c�

(55)

where the angular brackets represent area integrals in the cross-stream plane, i.e.

�c�=
&�

−�

&�
−�

c dy dz, (56)

and the dispersion coefficients sy and sz can be obtained by

sy
2=

�(y−y)2c�
�c� , (57)
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Figure 5. Dispersion coefficients for mid-level pollutant release. (a) sy ; (b) sz. � Present result; � experimental results
of Willis and Deardorff [1] and Willis [2];� Briggs [22] Pasquill–Gifford stability class A;� Briggs [22] Pasquill–Gif-
ford stability class B;  Hanna [23]. Dispersion coefficients for ground-level pollutant release. (c) sy ; (d) sz. � Present
result; � experimental results of Willis and Deardorff [1] and Willis [2]; � Briggs [22] Pasquill–Gifford stability class

A; � Briggs [22] Pasquill–Gifford stability class B;  Hanna [23].
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s z
2=

�(z−z)2c�
�c� . (58)

The model predictions of sy and sz as functions of downstream distance X from the source
are compared with the experimental observation in Figure 5(a) and Figure 5(b) (for the cases

Figure 5 (Continued)
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Figure 6. Ground surface non-dimensional pollutant contour plot. (a) present result; (b) Willis and Deardorff [2]; (c)
Sykes et al. [11].
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Figure 6 (Continued)

of mid-level release i.e. z=0.5zi) and in Figure 5(c) and Figure 5(d) (for the cases of ground
level release i.e. z=0.067zi). Dispersion coefficients suggested by Briggs [22] and Hanna [23]
were also shown in the figure for comparison.

For the comparison of horizontal dispersion coefficient sy, the agreement between experi-
mental observation and numerical model is quite good, except for the early part of the flow
(XB1), where the numerical model overpredicted the values. This is mainly due to the
uncertainty of the horizontal crosswind velocity variance 6%2. Willis and Deardorff [24] only
presented the averaged value of horizontal velocity variance, i.e. (u %2+6%2)/2, which is used
as the horizontal crosswind velocity variance 6%2 in the present calculation. Hanna [23]
overpredicted sy values, except those very close to the pollutant source. A better agreement
with experimental values for Pasquill–Gifford (P–G) stability classes A and B [22] can be
observed. The P–G stability classes A and B represent unstable atmospheric conditions and
are therefore selected for the present comparison. It can be observed that Briggs [22]
overpredicted sy for greater X (:30% for stability class A at X=2.7). The difference
increases with increasing streamwise distance X for stability class A. As a whole, the present
numerical model retains close approximation to the experimental observation throughout the
measurement range.

For the comparison of vertical dispersion coefficient sz, it can be observed that the present
model slightly underpredicted sz but the general profile agreed well with experimental
observation throughout the measurement range. The sz values obtained by Hanna [23] are
comparable with experimental observation for XB0.6. Briggs [22] underpredicted the experi-
mental sz values for XB1 and overpredicted the values for other streamwise distances.
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Figure 6(a) shows the contour plot of ground level pollutant concentration C for the release
of passive material in the middle of the mixing layer. The result is compared with the
experimental observation of Willis [2] (Figure 6(b)), and the numerical results of Sykes et al.
[11] (Figure 6(c)). It can be observed that both numerical models underpredicted the maximum
surface impact (:17% for the present numerical model and :33% for Sykes et al. [11]). In
addition, the non-Gaussian descent of the plume cannot be simulated in Sykes et al. [11],
because the model is simplified by assuming Gaussian shape for pollutant concentration,
resulting in underprediction of the ground level impact.

In the present numerical model the agreement between ground level impact and experimen-
tal observation is better than that of Skyes et al. [11], indicating that the present model can
simulate more closely the descent of the plume to the surface. However, as the effect of
temperature and stability have not been considered in adopting the boundary conditions, the
descent of the plume predicted by the present model is smaller than that of the experimental
observation, causing the underprediction. Although this can be improved by reducing the
distance between the source and the left-most computation domain, this will also greatly
increase the computation load and is therefore not favorable.

Figure 7 shows the concentration contour of X–Z plane along Y=0. The descent of the
plume trajectory and the impact on the ground which is discussed above can be observed. The
plume reached the ground at X:0.5, resulting in the maximum ground concentration
observed in the ground level pollutant contour of Figure 6(a). It can also be observed that C
increases for X\2 and Y\0.8, showing that the pollutant rises up into the mixed layer. This
agrees with the plume behaviour described in Willis [2].

Figure 7. Non-dimensional pollutant contour plot of the present model; X–Z plane at Y=0.
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8. CONCLUSION

It is demonstrated that the present second-order closure model can be used to simulate the
transportation of plume under a convective boundary layer. The results of the present model
compared well with recent experimental observations. Several non-Gaussian plume behaviours,
such as the descent and rise of plume trajectory can be modelled by the present model. The
second-order closure model involves four simultaneous partial differential equations in the
three-dimensional calculation, which normally requires long computation time and large
memory in traditional serial code. Parallelization of the present model accelerates the compu-
tation time and greatly increases the size of memory. Thus, more sophisticated dispersion
modelling can be carried out by the second-order closure dispersion model using parallel
computation.
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APPENDIX A. NOMENCLATURE

a turbulent closure constant=0.3 (from Reference [12])
A turbulent closure constant=0.75 (from Reference [12])
b turbulent closure constant=0.125 (from Reference [12])
c pollutant concentration
C dimensionless concentration= (Umzi

2c)/Q
covariance of concentration and temperaturec %u %

E turbulent kinetic energy
g gravity acceleration

eddy diffusivitiesk
[K ]=Kij stiffness matrix
[J ] Jacobian matrix
[M ]=Mij mass matrix
n number of node points in a element, number of rows or column of a matrix

number of non-zero elementsnnz
[N ]=Ni interpolation function
q turbulent velocity
Q pollutant source emission rate
s turbulent closure constant=1.8 (from Reference [12])
t time
Dt time interval
To potential temperature
U mean wind speed along streamwise direction

mean wind speed in convective boundary layerUm

Us wind speed at source height
6%c, w %2 crosswind speed variances in lateral and vertical direction, respectively
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concentration fluxes6%c %, w %c %
w %u % vertical heat flux
w� convective velocity scale

streamwise distance from the point source where boundary condition applyx̄
{x}=xi x co-ordinate of global node point in an element
X dimensionless streamwise distance= (w�x)/(ziUm)
x, y, z Cartesian co-ordinate in streamwise, lateral and vertical direction, respectively
{y}=yi y co-ordinate of global node point in an element
Y dimensionless lateral distance=y/zi

plume centroid along streamwise direction(y, z)
{z}=zi z co-ordinate of global node point in an element
zi convective boundary layer thickness

pollutant emission heightzs

Z dimensionless vertical height=z/zi

[f ]=fi node value
f i

n node value of node point i at time n
L turbulent length scale

pollutant dispersion coefficients in lateral and vertical direction, respectivelysy, sz

v successive overrelaxation factor
(ji, hi, zi) local co-ordinate of node point i in an element
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